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ABSTRACT 
Tugnait, and Chi and Chen proposed multi-input multi- 
output inverse a t e r  criteria (MIMO-IFC) using higher-order 
statistics for blind deconvolution of multi-input multi-output 
(MIMO) linear time-invariant (LTI) systems. This paper 
proposes a performance analysis for the MIMO linear equal- 
izer associated with MIMO-IFC for finite SNR, including 
(Pl) perfect phase equalization property, (P2) a relation to 
MIMO minimum mean square error (MIMO-MMSE) equal- 
izer, and (P3) a connection with the one obtained by Ye- 
ung and Yau's MIMO super-exponential algorithm (MIMO- 
SEA) that usually converges fast but no guarantee of con- 
vergence for finite data. Furthermore, based on (P3), a 
MIMO-IFC based algorithm with performance similar to 
that of the MIMO-SEA and with guaranteed convergence 
is proposed. Finally, some simulation results are presented 
to support the analytic results and the proposed algorithm. 

1. INTRODUCTION 

Blind deconvolution of a multi-input multi-output (MIMO) 
linear time-invariant system, denoted H[n] (P x K matrix), 
is a problem of estimating the vector input U[.] = ( u ~ [ n ] ,  
..., UK[n])T (K inputs) with only a set of non-Gaussian vec- 
tor output measurements x[n] = (zl[n], ..., z ~ [ n ] ) ~  ( P  out- 
puts) as follows [l-31 

x[n] = 2 H[k]u[n - IC] + w[n] (1) 
k - m  

where w[n] (P x 1 vector) is additive noise. Blind decon- 
volution of MIMO systems in multiuser detection of wire- 
less communications includes suppression of multiple access 
interference (MAI) and removal of multiple transmission 
paths that are crucial to the receiver design of multiuser 
communications systems. 

Let v[n] = (vl[n], ..., v ~ [ n ] ) ~  denote a linear FIR equalizer 
of length L = LZ - L1 + 1 for which v[n] # 0 for n = 
L1,Ll + 1, ..., Lz. Let cum{y~,y~,...,y,} denote the pth- 
order cumulant of random variables yl, yz, ..., up and F{o} 
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denote discrete-time Fourier transform operator. For ease 
of later use, let us define the following notations 

cum{y : p , . . . }  = cum(y1 = y, ..., y, = y,...} 

- ~ P , I 7 t Y l  = cumty :PI I!* : d 
V j  = (v j [~1] ,  . . . , v j [ ~ ] ) ~  
Y = (u~,uif,...,u;)T 

~jl.1 = ( ~ j [ n  - L ~ I ,  ..., zj[n - ~ 2 1 ) ~  
R,j = ~[zf[n]zT[n]] (L x L matrix) 

k = {&,j) (P x P block matrix) 

where y* denotes the complex conjugate of y. Then the 
output e[n] of the FIR equalizer v[n] can be expressed as 

P P 

e[n] = vj 1711 * ~j [n] = U T Z ~  [n] (2) 

= sj[ni * u j ~  + by (1) (3) 

j=1 j = 1  

K 

j=1  

where w[n] is the noise term due to w[n] and 
P La 

m=l I=L1 
~j [n]  = vm[~]hm,j[n - 11 (4) 

where hm,j(n] is the (na,j)th component of H[n]. The de- 
signed linear equalizer is usually evaluated by the amount 
of intersymbol interference (ISI) defined as [3,4] 

Note that ISI(e[n]) = 0 as st[n] = aa[n - T] and sj[n] = 0 
for j # L. 

Single-input single-output inverse filter criteria (SISO-IFC) 
[4-61 using higher-order cumulants have been widely used 
for blind deconvolution and their performance analyses for 
finite SNR have been reported by Feng and Chi [5,6]. In this 
paper, we propose performance analyses for cumuIant based 
multi-input multi-output inverse filter criteria (MIMO-IFC) 
[1,2]. Furthermore, based on the analytic results, a MIMO- 
IFC based algorithm with performance similar to that of Ye- 
ung and Yau's MIMO super-exponential algorithm (MIMO- 
SEA) [3] and with guaranteed convergence is proposed. 
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2. REVIEW OF MIMO-IFC AND MIMO-SEA 

Assume that we are given a set of measurements x[n], n = 0, 
1, ..., N-1, modeled by (1) with the following assumptions: 

(Al) uj [n] is zero-mean, independent identically distributed 
(i.i.d.) non-Guassian with variance oij and (p+q)th- 
order cumulant Cp,q{uj [n]}, and statistically inde- 
pendent of ?Lk[n] for all k # j .  

(A2) The MIMO system H[n] is exponentially stable. 
(A3) The noise w[n] is zero-mean Gaussian and statisti- 

cally independent of U[.]. 

Chi and Chen [2] find the optimum U by maximizing the 
following MIMO-IFC 

where p and q are nonnegative integers and p + q 2 3 
through using iterative optimization algorithms because all 
MIMO-IFC Jp,q are a highly nonlinear function of U. Note 
that the MIMO-IFC given by (6)  include Tugnait's MIMO- 
IFC [l] for (P,q) = (2,l) and (p,q) = (2,2) as special cases. 

The MIMO-SEA proposed by Yeung and Yau [3] iteratively 
updates U at the I th  iteration by solving the following linear 
equations 

(7) 

where z[J-ll = (d;, d r ,  ..., dT)T in which 

dj = cum{e['-'][n] : r ,  (e['-'][n])* : s - 1, &[n]} (8) 

in which r + s 2 3 and e['-'][n] is the equalizer output ob- 
tained at the (I - 1)th iteration. 

A known fact and two observations regarding MIMO-IFC 
and MIMO-SEA are as follows: 

Estimates Ql[n], C2[n], ..., &[n] can be obtained by the 
MIMO-IFC or MIMO-SEA in a non-sequential order through 
a multistage successive cancellation (MSC) procedure [l] 
that includes the following two steps at each stage: 

(Sl) Find an input estimate, said &[n] (where L is un- 
known), and the associated channel estimates Li,t[n], 
i = 1, 2, ..., P using MIMO-IFC or MIMO-SEA. 

(S2) Update ~ i [ n ]  by ~ i [ n ]  - Ct[n] *L~,~[Tz], i = 1, 2, ..., P. 

3. PERFORMANCE ANALYSIS FOR 
MIMO-IFC 

Prior to presenting analytical results for the performance 
of the FIR equalizer v[n] associated with MIMO-IFC, let 
us present the nonblind MIMO minimum mean square er- 
ror (MIMO-MMSE) equalizer, denoted VMMSE(W) (K x P 
matrix), that has some relation to v[n]. It can be shown by 
orthogonality principle [SI that 

where R ( w )  = F{R[k]} = F{E[x[n]xH[n - k]]}, N ( w )  = 
w 3 [ n l }  and 

S = diag{of, , ..., cr:K ). 

Some analytical results regarding the optimum v[n] for fi- 
nite SNR are summarized as follows: 

Property 1.  The optimum overall impulse response ~ j [ n ]  
given by (4), j = 1, ..., K ,  are linear phase for finite L, 
i.e., their phase responses are given by 

arg[Sj(~)] = W T ~  +(j, VW E [ - r ,?~) (12) 

where S j ( w )  = F{Sj[n]), rj and {j are real constants. 0 

Property 2. The optimum V(W) = F{v[n]} for L1 + -CO 
and L2 + CO i s  related to VMMSE(W) by 

In the absence of noise (i.e., SNR = CO), the opti- 
mum e[n] = atut[n - rf] (perfect equalization) (i.e., 
ISI(e[n]) = 0) for both MIMO-IFC and MIMO-SEA 
as LI + -CO and L2 + CO where L E {1,2,...,K} 
is unknown. 
an estimate of ut[n] up to a scale factor and a time 
delay, and hi,t[k] can also be estimated as 

where 

(14) P * C1,1{e[nlI 
(P + Q) . C9,P te[4) 

For finite SNR and L, %[n] = e[.] is a P , q  = 

The computationally efficient MIMO-SEA converges D P , , ( W )  = [Dl(W), .", D K ( 4 I T  (16) 
at a super-exponential rate for SNR = 00 and suf- 
ficiently large N, but it may diverge for finite SNR in which 
and N. 
With larger computational load than solving the lin- 

(17) 
n 
U ear equations given by (7), gradient type-iterative 

MIMO-IFC algorithms (such as Fletcher-Powell algG 
rithm [7]) always spend more iterations (lower con- 

Property 3. The optimum v[n] and the one obtained by 
the MIMO-SEA are the same for p = q = r = s 2 2 and 

vergence speed) than MIMO-SEA. finite L .  0 
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Furthermore, based on Property 3 and the observations 
(01) and (02), a fast iterative algorithm is proposed for 
finding the optimum v[n] associated with MIMO-IFC for 

Algorithm 1. Given u I - 1  and e[I-’*[n] obtained at the 
( I  - 1)th iteration, vr at the I th  iteration is obtained by 
the following two steps. 
(Tl) As the MIMO-SEA, obtain by solving (7) with 

r = s = p = q and obtain the associated e[I1[n]. 
(T2) If Jp,,,(vr) > Jp ,p (uI - l ) ,  go to the next iteration, 

otherwise update U I  through a gradient type o ti- 

p = q as follows: 

mization algorithm and obtain the associated e [I? [n]. 

It can be easily shown that 

where z[I-ll has been obtained in (Tl) (see (7)) and 5 is 
the same at each iteration, indicating simple and straight- 
forward computation for obtaining BJp,p(u)/8u in (T2). 
Let us conclude this section with the following remark: 
(Rl) Algorithm 1 performs as a fast gradient type MIMO- 

IFC algorithm with convergence speed, computational 
load, and IS1 similar to those of MIMO-SEA (due to 
the step (Tl)) and with guaranteed convergence (due 
to the step (T2)). 

4. SIMULATION RESULTS 

A two-input two-output system taken from [l] was con- 
sidered with the two inputs ul[n] and u ~ [ n ]  assumed to 
be equally probable binary random sequences of {+l, -1). 
The synthetic data x[n] for N = 900 and SNR. = 15 
dB (spatially independent and temporally white Gaussian 
noise) were processed by the inverse filter v[n] of length 
L = 30 (L1 = 0 and L2 = 29) associated with MIMO-IFC 
using the iterative Fletcher-Powell algorithm [7], MIMO- 
SEA and Algorithm 1, respectively, with p = q = r = s = 2. 
The initial condition associated with uo was VI [n] = wz[n] = 
S[n - 141 for the first stage and wl[n] = S[n - 141 and 
w2[n] = 0 for the second stage of the MSC procedure. 

Thirty independent realizations of the optimum sl[n] (as- 
sociated with ul[n]) and the associated thirty IS1 versus 
iteration number obtained at the first stage of the MSC 
procedure are shown in Figures l(a) through l(f) using the 
three algorithms, respectively. One can see, from Figure 1, 
that the resultant s1[n]’s are linear phase and they are sim- 
ilar for the three algorithms thus verifying Properties 1 and 
3, while the convergence speed for the proposed Algorithm 
1 is basically the same as that of MIMO-SEA and faster 
than the MIMO-IFC using Fletcher-Powell algorithm, thus 
verifying ( 0 2 ) .  The corresponding results for s2[n] and IS1 
obtained at the second stage of the MSC procedure are 
shown in Figures 2(a) through 2(f). These results also sup- 
port Properties 1 and 3, and (02), but the MIMO-SEA 
failed to converge in one realization (see Figure 2(d)) and 

the associated s2[n] failed to approximate a delta function 
(see Figure 2(c)) thus verifying (01). Algorithm 1 outper- 
forms the other two algorithms in the second stage of the 
MSC procedure because the former converges as fast as the 
MIMO-SEA in all the thirty realizations (without any di- 
vergence) and converges faster than MIMO-IFC using the 
Fletcher-Powell algorithm. 

6. CONCLUSIONS 

We have presented a performance analysis for the MIMO 
linear equalizer v[n] associated with Chi and Chen’s MIMO- 
IFC for finite SNR,, including perfect phase equalization, 
a relation to the nonblind MIMO-MMSE equalizer, and 
equivalence to the one associated with MIMO-SEA for p = 
q = r = s, as presented in Properties 1, 2 and 3 respec- 
tively. Based on Property 3, a MIMO-IFC based algorithm, 
Algorithm 1, was presented that performs as the MIMO- 
SEA (in terms of ISI, computational load and convergence 
speed) with guaranteed convergence (see (Rl)) while the 
latter may not converge for finite SNR and data (see (01)). 
Some simulation results were also presented that support 
the proposed analytical results and Algorithm 1. The ap- 
plication of MIMO-IFC to multiuser detection of CDMA 
systems using Algorithm 1 is under study. 
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'ig. 1. Thirty simulation results of sl[n] and IS1 versus iteration number 1 at the first stage of the MSC procedure. (a) 
1 [n] and (b) IS1 associated with MIMO-IFC for p = q = 2 using Fletcher-Powell Algorithm, (c) Sl[n] and (d) IS1 associated 
iLh MIMO-SEA for T = s = 2, and (e) si[n] and (f) IS1 associated with Algorithm 1 for p = q = T = s = 2. 
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Fig. 2. Thirty simulation results of m[n] and IS1 versus iteration number I at the second stage of the MSC procedure. (a) 
s2[n] and (b) IS1 associated with MIMO-IFC for p = q = 2 using Fletcher-Powell Algorithm, (c) s~[n ]  and (d) IS1 associated 
with MIMO-SEA for r = s = 2, and (e) s2[n] and (f) IS1 associated with Algorithm 1 for p = q = r = s = 2. 
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